Centrioles Regulate Centrosome Size by Controlling the Rate of Cnn Incorporation into the PCM

نویسندگان

  • Paul T. Conduit
  • Kathrin Brunk
  • Jeroen Dobbelaere
  • Carly I. Dix
  • Eliana P. Lucas
  • Jordan W. Raff
چکیده

BACKGROUND centrosomes are major microtubule organizing centers in animal cells, and they comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Centrosome size is tightly regulated during the cell cycle, and it has recently been shown that the two centrosomes in certain stem cells are often asymmetric in size. There is compelling evidence that centrioles influence centrosome size, but how centrosome size is set remains mysterious. RESULTS we show that the conserved Drosophila PCM protein Cnn exhibits an unusual dynamic behavior, because Cnn molecules only incorporate into the PCM closest to the centrioles and then spread outward through the rest of the PCM. Cnn incorporation into the PCM is driven by an interaction with the conserved centriolar proteins Asl (Cep152 in humans) and DSpd-2 (Cep192 in humans). The rate of Cnn incorporation into the PCM is tightly regulated during the cell cycle, and this rate influences the amount of Cnn in the PCM, which in turn is an important determinant of overall centrosome size. Intriguingly, daughter centrioles in syncytial embryos only start to incorporate Cnn as they disengage from their mothers; this generates a centrosome size asymmetry, with mother centrioles always initially organizing more Cnn than their daughters. CONCLUSIONS centrioles can control the amount of PCM they organize by regulating the rate of Cnn incorporation into the PCM. This mechanism can explain how centrosome size is regulated during the cell cycle and also allows mother and daughter centrioles to set centrosome size independently of one another.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cnn Dynamics Drive Centrosome Size Asymmetry to Ensure Daughter Centriole Retention in Drosophila Neuroblasts

Centrosomes comprise a pair of centrioles surrounded by an amorphous network of pericentriolar material (PCM). In certain stem cells, the two centrosomes differ in size, and this appears to be important for asymmetric cell division [1, 2]. In some cases, centrosome asymmetry is linked to centriole age because the older, mother centriole always organizes more PCM than the daughter centriole, thu...

متن کامل

Structured illumination of the interface between centriole and peri-centriolar material

The increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-li...

متن کامل

A molecular mechanism of mitotic centrosome assembly in Drosophila

Centrosomes comprise a pair of centrioles surrounded by pericentriolar material (PCM). The PCM expands dramatically as cells enter mitosis, but it is unclear how this occurs. In this study, we show that the centriole protein Asl initiates the recruitment of DSpd-2 and Cnn to mother centrioles; both proteins then assemble into co-dependent scaffold-like structures that spread outwards from the m...

متن کامل

A Genome-Wide RNAi Screen to Dissect Centriole Duplication and Centrosome Maturation in Drosophila

Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Here, we have performed a microscopy-based genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes) and identified 32 genes involved in centrosome fun...

متن کامل

Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila Centrosomin

Centrosomes consist of two centrioles surrounded by an amorphous pericentriolar matrix (PCM), but it is unknown how centrioles and PCM are connected. We show that the centrioles in Drosophila embryos that lack the centrosomal protein Centrosomin (Cnn) can recruit PCM components but cannot maintain a proper attachment to the PCM. As a result, the centrioles "rocket" around in the embryo and ofte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010